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1. Introduction

The advantage of two-point closure models over one-point closure models is that

they retain one of the most important turbulence characteristics, the energy transfer

mechanism among eddies of different sizes. These models require closure hypotheses

on the higher order terms. Among the different models derived by the direct-

interaction approximation, DIA, of Kraichnan the simplest one is the eddy-damped

quasi-normal Markovianized, EDQNM, theory of Orszag (1970). It requires a very

simple numerical scheme to solve the so-called triadic integral. This closure is based

on the quasi-normal approximation in the equation for the third-order cumulants

where fourth-order terms are replaced by products of second order terms. The

approximation gives an unrealistic increase of the third order cumulant and leads

to negative energies. The introduction of an eddy damping term eliminates that

unphysical effect.

2. Isotropic Turbulence

When a particular transformation (Crocco & Orlandi, 1985) for the wave numbers

is introduced, the EDQNM expression of the energy transfer term is

1f01 /l+aT(k)= _ dfl dT[kS_(k,flk,Tk)+( )3_(k,k/fl, Tk/fl)] (1)
.]1-_

where the integration is to be performed only in a triangle in the (fl,7) plane.

_(k,p,q) is given by

rE(p) E(k) E(q)

E(k'p'q)=kZpqB(k'p'q)D(k'p'q)[ p-2 k 2 ] q2 (2)

where B(k,p, q) is a geometrical factor and D(k,p, q) is the relaxation frequency

that results from the Markovianization of a certain integral:

1- e -['l( k)+n(p)+rt(q)lt

D(k,p,q) = rl(k ) + rl(p ) + rl(q )

The damping function r/(k) completes the EDQNM closure and the expression

generally adopted is
1

= ,,k + p E(p)dp)

1 University of Rome
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FIGURE 1. Energy transfer distribution: (a) t = 0.54, (b) t = 4.34,
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Comparisons between EDQNM and direct simulation, DS, are possible only at

very low Reynolds numbers. In the past these comparisons were limited to the evo-

lution in time of globally averaged quantities such as turbulent energy , dissipation

and skewness. In the first part of the CTR summer program a detailed comparison

of the energy transfer between scales ill a DS and the transfer given by EDQNM

has been made. Only the accurate prediction of the energy transfer distribution is

sufficient to demonstrate that the EDQNM closure describes correctly the complex

mechanism of energy transfer among different scales. An even better check of the

closure would be obtained by comparison of the detailed interaction distribution

_(k,p,q) in the (fl,7) plane. This has been done by Wray, but the evaluation of

E(k,p, q) within a DS requires O(N 2) operations and the calculation was thus lim-

ited to a simulation of only N = 323 nodes. The resulting _ distribution was very

sparse and it was difficult to infer a continuous distribution from a single realization.

Once the transfer T(k) is determined, the energy spectrum evolution is obtained by

solving
OE(k)

+ 2vk2E(k)= T(k) (3)

Starting from the initial spectrum used in the DS, (3) together with (1) and (2)

have been solved, figure 1 shows the energy transfer term at two different times

and indicates very good agreement with the DS results.

The ability of the EDQNM closure to produce accurate transfer spectra encour-

ages its use as a closure model (subgrid or supergrid) in a DS. A simulation at high

Reynolds numbers, with an inertial range extending for at least one decade, might

then be obtained by introducing both a subgrid and a supergrid model to account

for the transfer between the computed scales and the unresolved scales both at low

and high wave numbers. The energy spectrum is then subdivided into three regions
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FIGURE 2. (a) Partition of the energy spectrum into resolved and unresolved

scales. (b) Partition of the domain of integration for _(k,p, q).

as figure 2a shows. In the DS range k_o < k < khi the energy transfer can be

decomposed into two parts,

T(k) = To(k)+ Tog,(klkto, khi),

where Tc(k) is the transfer due to interactions between wave numbers within the DS,

T, gs(klkto, khi) is the transfer due to interactions involving wave numbers p, q < kzo

(supergrid T<(klkto)), and interactions involving wave numbers p, q > khi (subgrid

T>(klkhi)). The transfers due to interactions outside the DS are evaluated by (1).

figure 2b shows the contribution of supergrid and subgrid ranges to the integral (1).

When k is very close to khi, interactions between sub- and supergrid scales occur,

and these can be easily calculated.

Tile integral (1) is calculated by discretizing tile triangle into quadrilaterals of

different sizes whose areas are related to the number of points per octave used

to represent the energy spectrum. Thus, at each point inside the domain in the

(_,7) plane, E(k,p,q) represents the interaction of wave numbers p and q. When

T<(klkto) (supergrid) is calculated, _(k,p,q) is set to 0 unless p or q is less than

kto. In a similar way when T>(klkhi) is calculated, _,(k,p, q) is set to 0 unless p or

q is greater than khi.

To compare the transfers due to unresolved scales obtained by the EDQNM in-

tegral with those obtained by DS, the flowfield of a DS with a 128 s resolution has

been considered and the transfers across several cutoff wave numbers k_, have been

calculated. Figures 3 and 4 show that the distributions of T(k), T<(klkc), and

T>(klkc) obtained from DS are in very good agreement with those calculated by

EDQNM at both small and large times. As a result of this very good agreement

it is hoped that a DS can be used to simulate decaying turbulence at high Re. At
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FIGURE 3.
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Energy transfer distribution at t = 0.54 (a) kc = 4, (b) kc = 16:
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FIGURE 4.

EDQNM

A T<(klkc).

Energy transfer distribution at t = 4.34 (a) k_ = 4, (b) k_ = 16:

T(k), ----- T>(klkc), T<(klk_); DS = T(k), o T>(klkc),

each time step the EDQNM calculation with k,_i,, << kzo and k,_a_ >> khi gives

the transfers T<(k]klo) and T>(k]khi) necessary to drive the simulation at the large

scales and remove energy at the small ones.
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q2

_12s 2

uI2/q 2

St = 0

20.89

.373

.329

.308

.0

Table 1.

Comparison between RDT and DS

case RR128: S = 28.28, l, : 0.01

St : 2

RDT DS

15.42 15.12

.428 .477

.242 .195

.329 .328

.535 .596

St:4

RDT DS

18.74 20.42

.502 .628

.181 .068

.316 .304

.579 .740

St:6

RDT DS

24.77 25.70

.534 .724

.166 .027

.299 .249

.558 .797

St : 8

RDT DS

33.34 31.11

.544 .779

.170 .012

.286 .207

.528 .812

St = 10

RDT DS

44.42 34.76

.525 .819

.191 .007

.284 .174

.498 .820

Case S64NJ: S = 10.00, v = 0.02

q2

_12s 2

3 /q

,2/q2u 1

St : 0 St : 2

RDT DS

20.89 4.29 5.19

.373 .452 .461

.329 .259 .165

.308 .302 .374

.0 .539 .843

St : 4

RDT DS

4.10 5.02

.535 .598

.166 .047

.299 .355

.607 .645

St : 6

RDT DS

4.81 5.16

.601 .699

.125 .018

.273 .283

.602 .471

3. Anisotropic Turbulence (rapid distortion case)

In the case of anisotropic turbulence the expression for the energy transfer term

is much more difficult to derive and it is not clear whether the eddy damping term

should have a tensorial or a scalar form. The time evolution of the correlations con-

sists in part of interactions between turbulence and mean fields and in part of higher

correlations. If interactions among the turbulent fields (slow terms) are neglected,

a calculation based on rapid-distortion theory, RDT, is possible. It is convenient

to work in a reference frame in which, for turbulence with some symmetry, all the

second order correlations can be derived from three quantities N1, N2, N3. In the

simple case of a shear flows with S = OU2/Ox3 the equations are (Craya 1958):

ON1 k2k3 ON1 _ fl,(k, O, _),
c9---_+ 2vk2N1 - 2S_ ,2 N1 - Sk2 c9k3

DN.._____2Ot + 2vk2N2 - 2S N3 - Sk2 ON2 - f_.(k,O,_o), (4)Ok3

ON3
sk2k3 --_y_ ON3 __ Q3(k ' 8, _),

g----t--+ 2vk_N3 - --_--N3 - S _ N1 - Sk2 Ok3
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FIGURE 5. Evolution of (a) turbulent kinetic energy, (b) Reynolds-stress an-

isotropy tensor. The present results are: -- B22, .... B11, ........ B33, ---- B23-

The solid symbols are the corresponding DS results.

where I_t(k, 0, _o) are the non-linear terms that are discarded in RDT. Introducing

the modified wave number system (kl, k2, k3 + Stk2) the system of equations (4)

can be easily solved.

Lee et al (1987) performed a DS by following the isotropic decay of an initial

spectrum until it reaches a value for the skewness of about -0.5. This field was

then used as the initial condition for a highly sheared simulation. Flow field struc-

tures similar to those found near the walls of a channel are obtained even when

the non-linear terms are neglected. We calculated this case by using EDQNM for

the isotropic decay and RDT for the high shear evolution, figure 5 shows good

agreement between the present results and those obtained by DS. A further com-

parison between the RDT calculations and cases S64NJ and RR128 of Rogers et al

(1986) has been completed. Table 1 shows that due to the predominant effect of

the viscosity on the shear, the RDT calculation predicts the behavior of the total

energy also at the later times, St, but it does not predict well the time evolution of
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each component. This is consistent with the analysis done by Brasseur during the

CTR summer school. He analyzed the effects of the slow pressure terms and found

i 2 •Our,2 and from there to u 1that these withdraw energy from u_ 2, transfer it to u 3

,2 than the one obtained by DS. On thecalculation shows a faster decay of the u 3

contrary u_ 2 agrees with the DS because the amount of energy it is receiving from
12,2 is comparable to the amount of energy it is transfering to u 3 .u 2

4. Conclusions

From these preliminary calculations we conclude that the two-point EDQNM

closure accurately describes the behavior of second order moments. This closure

can be applied as subgrid and supergrid models for Large Eddy Simulations at

higher Reynolds numbers• In the case of homogeneous anisotropic turbulence, when

the non-linear terms are introduced the calculation becomes quite onerous but is

still considerably less expensive than the calculation of a DS. The major merit of

two-point closure models is that they can be easily applied to flows at Reynolds

numbers that are unreachable by a DS. Work is in progress to derive expressions

for the non-linear terms that give good global conservation properties•
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